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Diffusion in channeled structures: Xenon in a crystalline sodalite
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The theory of Ronis and Vertenstein@J. Chem. Phys.85, 1628~1986!# is used to calculate the permeability
of xenon in Theta-1, a crystalline sodalite containing one-dimensional channels. The required time-correlation
functions are obtained from numerical simulations performed using a small number of target crystal atoms. The
dynamics of the target atoms reproduce those of the full crystal by the means of a generalized Langevin
equation of motion. An approximate expression for the potential of mean force inside the crystal is derived.
The plane average space-dependent diffusion coefficientD(z) obeys the Smoluchowski prediction at infinite
dilution. The permeability is reported and compared in detail with that obtained from transition state theory.
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I. INTRODUCTION

Understanding the diffusion of a guest component ins
channeled structures~such as membrane channels, zeolit
and many silicates! has been a problem of interest for ma
years. Crystalline channeled structures have many app
tions in gas phase separation and are also widely use
catalysts in chemical reactions@1,2#. The diffusion of one or
more guest components inside the crystal plays an impor
role in any of these applications. In this work, we develop
systematic approach that allows us to understand the d
sion process microscopically and calculate the macrosc
permeability of channeled structures to a guest compon
Specifically, we will apply the theory to the diffusion o
noble gases through Theta-1, a high silicate zeolite
shows a remarkable selectivity in catalysis applications@2#
and could be a good candidate to study single-file diffus
@3,4#.

Early theoretical calculations on channeled structures
cused mainly on the heat of sorption@5,6#. These calcula-
tions were performed using a model potential for the gue
crystal interactions on a rigid lattice. Next, the diffusion
channels was studied through molecular dynamics~MD!
simulation @7–9#, where a diffusion coefficient was calcu
lated from Einstein or Green-Kubo relations; cf. Eqs.~1.1!
and ~1.2! below. For high internal potential energy barrie
where barrier crossing events are rare, a common wa
proceed was to determine a hopping rate constant using
sition state theory@10–12#.

In homogeneous systems, the diffusion coefficientD can
be obtained using an Einstein relation,

D5 lim
t→`

^ur ~ t !2r ~0!u2&
6t

, ~1.1!

or equivalently by a Green-Kubo relation,

D5
1

3E0

`

dt^v~ t !•v~0!&, ~1.2!

where r is the position of the guest,v is its velocity and
^•••& denotes an equilibrium average. These last two eq
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tions are valid only for an uniform system, and imply a d
fusion equation for the guest component of the form

]n~r ,t !

]t
5D¹2n~r ,t !, ~1.3!

wheren(r ,t) is the number density of the guest.
In the second approach, transition state theory or one

its modified versions~cf. Refs.@10–12#! is used in a hopping
model to calculate the hopping rate constants. Of cou
transition state theory makes several assumptions, the
ones being that the motion closely follows the reaction co
dinate and that there are no recrossings. This paper prop
an alternative and more general method that can also be
to verify the validity of transition state theory.

For bounded systems with large potential gradients
more correct starting point is the generalized diffusion eq
tion,

]n~r ,t !

]t
5“ r•E dr 8LJ~r ur 8!•“ r8bm~r 8,t !, ~1.4!

wherem(r ,t) is the chemical potential and where the gen
alized Onsager diffusion coefficient,

LJ~r ur 8![E
0

`

dt^J†~r ,t !J†~r 8!&, ~1.5!

leads to a space-dependent, nonlocal, diffusion coeffic
generalizing Eq.~1.3!. In this last equation,J† is the dissipa-
tive ~random! part of the diffusion current defined by a pro
jection operator@13,14#.

In all the approaches just mentioned, one still needs
make contact with what is measured experimentally; e.g.,
net flux j of material passing through the channeled mater
In steady state, this typically obeys the macroscopic phen
enological constitutive relation

j 5P~m12m2!z50 , ~1.6!

whereP is the permeability andm6 are the chemical poten
tials in the6 phases. The net flow is assumed to lie alo
the z axis andz50 is the midplane inside the channele
structure.
©2003 The American Physical Society27-1
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The simple diffusive or hopping models easily yield e
pressions for the permeability. The calculation based on
generalized diffusion equation, Eq.~1.4!, is more involved,
was considered in Ref.@15#, and will be used here. Note tha
this theory does not assumea priori any reaction coordinate
that dominates the dynamics of the guest.

Previous molecular dynamics simulations were perform
using rigid@7–9# or flexible @10–12,16# lattices. The motion
of the lattice in Refs.@10–12,16# is, again, simulated with
molecular dynamics~in practice, however, the systems stu
ied are fairly small, namely, a single unit cell containing 6
lattice atoms!. In this work, the motion of the lattice is de
scribed by a generalized Langevin equation~GLE! that mim-
ics the effect of the infinite crystal. This approach is taken
many reasons. First, with the GLE, it is possible to reprod
the vibrational density of states of the infinite crystal w
high accuracy. Second, the presence of the guest will in
energy in the crystal lattice. The use of GLE allows the d
sipation of that energy in a physically consistent way.
conventional MD, this extra kinetic energy would stay in t
system and could later on affect the guest dynamics. As
pointed out by Kopelevich and Chang@17#, there are also
more subtle problems associated with classical lattice mo
with periodic boundary conditions; specifically, artifici
feed-back mechanisms can lead to highly exaggerated
bate transport rates in MD simulations.

Of course, for the same number of degrees of freed
the GLE is more numerically expansive than conventio
MD. If the vibrational spectrum of the infinite crystal is to b
reproduced in MD simulations for typical zeolites, the m
tion of about 104 atoms needs to be simulated. Therefore,
flexibility of the lattice is often neglected in such problem
As shown by Kopelevich and Chang@17#, neglecting the
flexibility of the lattice does not lead to large errors for sm
guest in large channel structures. However, as expected
cluding flexibility is mandatory for a system where the si
of the guest is larger than or comparable to the pore size
the guest has to pass through small bottlenecks. In o
words, one needs to include the flexibility if it changes s
nificantly the guest available volume inside the crystal.

The importance of our approach lies in its generality.
has been shown that the use of Eqs.~1.1!–~1.3! is inconsis-
tent for inhomogeneous systems@18#. We will show here that
the transition state theory approach is not valid for syste
with low energy barriers~in agreement with the predictio
made in Ref.@17#! where the flexibility of the lattice can
usually be neglected. When the energy barriers are la
transition state theory is expected to give a more accu
result, but in that case, the flexibility of the lattice usua
plays an important role. The method proposed here is gen
since it includes the flexibility of the lattice self-consisten
through a GLE and its applicability is independent of t
magnitude of the energy barriers.

The paper is divided as follows. In Sec. II, a summary
the theory leading to a projection-operator, correlatio
function expression for the macroscopic permeability is p
sented and we show how to approximately reexpress t
correlation functions containing projected dynamics in ter
of those associated with Newtonian equations of motion. T
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evaluation of the permeability requires a space-depend
Onsager diffusion coefficient which is obtained in terms
equilibrium time correlation functions that are computed
simulating generalized Langevin equations of motion for
guest and harmonic lattice atoms presented in Sec. II,
approach first discussed by Deutch and Silbey@19#.

In Sec. III, we show how the memory functions and ra
dom noise terms that appear in the Langevin equations
motion for the crystal atoms can be calculated and we d
onstrate that the vibrational density of states of the f
Theta-1 crystal is reproduced. We also give an approxim
way of calculating the potential of mean force for the gu
inside the crystal and test it against the numerical simu
tions.

Section IV presents the details of the molecular model a
gives results for the correlation functions and finally for t
permeability for xenon in Theta-1. A detailed comparis
with transition state theory is made in Sec. V. We summar
and make some concluding remarks in Sec. VI.

II. THEORY

A. Microscopic expressions for the permeability

The diffusion of the guest component inside the cha
neled structure is governed by the generalized diffus
equation, Eq.~1.4!. The system will have many potentia
barriers and a nontrivial energy landscape. Microscopic
pressions for the permeability starting from the generaliz
diffusion equation for such systems were obtained by Ro
and Vertenstein@15#. Here, we simply state their result. Th
macroscopic permeability of the channeled material is giv
by

1

P
5

1

bE2`

1`

dzF 1

D~z!
2

1

D1Q~z!1D2Q~2z!
G , ~2.1!

where,

D~z![
1

AE0

`

dtE dr i E dr 8^Jz
†~r ,t !Jz

†~r 8!&. ~2.2!

In these last equations,D(z) is a space-dependent Onsag
diffusion coefficient,D6 is the bulk chemical potential in the
6 phases,Jz

† is the z component of the irreversible part o
the current, andA is the area of the crystalline medium. Th
integral overr i (x,y) is a consequence of the fact that the n
current through the interface is along thez axis. Note that
this result is first order in membrane excess quantity and
choice ofD(z) makes the higher order corrections smalle

The expression for the permeability, Eq.~2.1!, was de-
rived on the basis of Eq.~1.6!. The chemical potentials ap
pearing in Eq.~1.6! are the bulk chemical potentials of th
two regions extrapolated to thez50 plane. It is more con-
venient to rewrite Eq.~1.6! in terms of the chemical potentia
at the two outer surfaces of the channeled medium. Sincej is
constant in the bulk in steady states, we rewrite Eq.~1.6! as

j 5P8@m~d!2m~2d!#, ~2.3!
7-2
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where 2d is the thickness of the interface and

1

P8
5

1

bE2d

d

dz
1

D~z!
~2.4!

is a permeability intrinsic to the material.

B. Correlation function expression for D„z…

We already have a correlation function expression for
space-dependent Onsager diffusion coefficientD(z) in Eq.
~2.2!. Unfortunately, this equation cannot be used directly
computeD(z) because it involves the random part of t
current. A common practice is to setJ†5J, but, as was
shown in Ref.@18#, this is only valid in special cases, and
general, it is not valid in systems that are spatially inhom
geneous. A correlation function expression forD(z) that ap-
proximately includes the effects of the projection operator
the time dependence of the memory function was obtai
by Ronis and Vertenstein@15# in terms of unprojected time
correlation functions. Their final expression forD(z) is

D~z!5

n`E
0

`

dt^vG,z~ t !vG,z&ze
2bW(z)

11E
0

`

dt^bF„z~ t !…vG,z&z

, ~2.5!

where n` is the number density in the bulk,vG,z is the z
component of the guest velocity,W(z) andF(z) are, respec-
tively, the plane average potential of mean force and
mean force. Also,̂•••&z denotes an equilibrium conditiona
average for trajectories whose initialz coordinate isz. Infi-
nite dilution was also assumed deriving Eq.~2.5!. The cor-
relations that appear in this expression will be evaluated
the means of numerical simulations of the particle dynam
below. Given the correlation functions that appear on
right-hand side of Eq.~2.5!, the calculation of the permeabi
ity is trivial. The equations of motion that will be used in th
numerical simulations are described next.

C. Equations of motion

In this section, the equations of motion for the diffusin
particle~hereafter referred to as the ‘‘guest’’! and the rest of
the silicate atoms are described. For practical purposes
motion of a relatively small number of crystal atoms must
simulated. The atoms in this part of the channel will be
ferred to as the target atoms and the rest of the crysta
called the bath. One of the main goals of this work is
preserve the effects of the crystalline bath on the motion
the target and guest atoms. In order to do this, we will us
projection operator approach introduced by Deutch and
bey @19# in their derivation of the Langevin equation of mo
tion for a particle in a harmonic lattice. This approach w
subsequently used by Tully in his work on gas-surface in
actions@20# and by Adelman, Diebold, and Mou@21# in their
work on gas-solid energy exchange processes.

By assuming that the guest does not directly interact w
the bath and that the crystal is fully harmonic, the equati
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of motion of the reduced~guest and target! system are

dpG~ t !

dt
52

]U~rG ,ra1
, . . . ,raNTarget

!

]rG
~2.6!

and

dpa

dt
52

]U~rG ,ra1
, . . . ,raNTarget

!

]ra
1eiLt^Fa&Bath1Fa

†~ t !

2E
0

t

dt1 (
g51

NTarget ^Fa
†~ t2t1!Fg

†&Bath

mgkBT
•pg~ t1!, ~2.7!

where

Fa
†~ t ![eiL Batht~12P!Fa ~2.8!

is the contribution to the force on theath target atom at time
t exerted by the bath in the presence of thefrozen target
atoms. In the last equations, the classical Liouville opera
( iL 5 iL Target1 iL Bath) has been introduced in addition t
another projection operator. The projection opera
^•••&Bath is a normalized average over the bath degrees
freedom.

Note, that the projection operator no longer appears in
time dependence ofF†(t), and moreover, as was shown
Ref. @19#, will evolve independently of the guest-target m
tion; as such, Eq.~2.7! is a generalized Langevin equatio
Fa

†(t) is a colored noise and is considered in more detai
the next section. The last term on the right hand side of
~2.7! is the expected friction term where the memory com
in through a force-force time correlation function.

Note that it is possible to further project out the equatio
of motion for the target atoms if we linearize the guest-tar
interaction with respect to the target coordinates. This is
sically the assumption of Deutch and Silbey, cf. Ref.@19#,
and this approach was taken by Kopelevich and Chang@17#.
This approximation is not valid when the size of the gues
comparable to or smaller than the pore sizes. Finally, n
that the assumption that the guest does not interact dire
with the bath can be relaxed if we can linearize the gue
bath forces in the bath degrees of freedom; this modifies
~2.7! slightly, and in particular, makes the memory functio
depend on the instantaneous position of the guest at timet1.
In the next section, we show how the force-force correlat
function can be calculated, and put everything together
order to perform the simulations.

III. IMPLEMENTATION

A. Effective forces and force correlation functions

In this section, we reexamine Eq.~2.7! and show how the
various terms that appear can be calculated. The separ
of crystal atoms into target and bath subspaces allows u
block the force constant matrixK as follows

K5S KTT KTB

KBT KBB
D , ~3.1!
7-3
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B. PALMIERI AND D. RONIS PHYSICAL REVIEW E68, 046127 ~2003!
whereKTT is the 3NTarget33NTarget matrix linking atoms in
the target subspace andKBB is a 3NBath33NBath matrix link-
ing atoms in the bath subspace only. The two rectang
matricesKBT andKTB connect the bath and target atoms. T
first term of Eq.~2.7! can be written in matrix notation as

eiLt^FT&Bath5eiLt^2KTTrT2KTBrB&Bath, ~3.2!

where FT , rT , and rB are, respectively, 3NTarget, 3NTarget,
and 3NBath column vectors. The Gaussian averages are
formed to give

eiLt^FT&Bath52KeffrT~ t !, ~3.3!

where

Keff[KTT2KTBKBB
21KBT ~3.4!

is an effective force constant matrix governing the harmo
motion of the target atoms in the presence of the bath.

We now derive an expression for the force correlat
function. Recall thatFT

†(t) is the force on the target exerte
by the bath when the target atoms are frozen. In that case
dynamics of the bath atoms are governed by

MB

d2rB8 ~ t !

dt2
52KBBrB8 ~ t !, ~3.5!

where

rB8 ~ t ![rB~ t !1KBB
21KBTrT . ~3.6!

In the last equations,MB is the diagonal matrix containing
the masses of the bath atoms.

The 3NBath eigenvectorsuB,i of the matrixKBB are deter-
mined by

K̃BBuB,i5v i
2uB,i , ~3.7!

where

K̃XY[MX
21/2KXYMY

21/2 with X,Y5T or B, ~3.8!

and wherev i
2 is the eigenvalue associated with thei th ei-

genvector. The shifted displacement vectorrB8 (t) can be ex-

panded in terms of the mass scaled eigenvectorsũB,i

5MB
21/2uB,i as

rB8 ~ t !5 (
i 51

3NBath

ũB,i S aicos~v i t !1
bi

v i
sin~v i t ! D , ~3.9!

where theai andbi are related to initial positions and veloc
ties, respectively, of the bath atoms and are Gaussian dis
uted. The random force, Eq.~2.8!, is

FT
†~ t !52KTBrB8 ~ t !, ~3.10!

in matrix notation, and this can be rewritten in terms of t
mass-scaled eigenvectors as
04612
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FT
†~ t !52KTB (

i 51

3NBath

uB,i8 S aicos~v i t !1
bi

v i
sin~v i t ! D .

~3.11!

Since theai andbi in the last equation are Gaussian distri
uted, Eq.~3.11! shows thatFT

†(t) is a Gaussian colored noise
Moreover, the random force-force correlation function
given by ^FT

†(t)(FT
†)T&Bath, and from Eq.~3.11!, is easily

written as

^FT
†~ t !~FT

†!T&Bath5kBTKTBMB
21/2

3 (
i 51

3NBath

uB,iuB,i
T cos~v i t !

v i
2

MB
21/2KBT ,

~3.12!

where we have expressed theuB,i8 in terms of the original
eigenvectorsuB,i , and wherê ai

2&5kBT/v i
2 .

As it turns out, the vibrational density of states of th
infinite crystal is reproduced when the bath containsO(104)
atoms. Therefore, Eq.~3.12! is not particularly convenient
In other words, the required eigenanalysis may be num
cally too demanding.

1. Brute force

The last section gives us a way of calculating the for
force correlation function in the time domain. By performin
a Laplace transform on Eq.~3.12! and using the fact that

(
i

uB,iv i
2uB,i

T 5K̃BB , ~3.13!

we obtain,

^FT
†~s!~FT

†!T&5
1

b
MT

1/2K̃TB

s

K̃BB~s21K̃BB!
K̃BTMT

1/2,

~3.14!

wheres is the Laplace transform variable. This last form
the force-force correlation function does not require an
genanalysis. Instead, it requires the inversion of a large
trix. Inversion of matrices requires less numerical effort th
a full eigenanalysis, especially when the matrices involv
are sparse. Also, the Laplace representation will be m
convenient to use in the simulations.

The inversion of a matrix of rankN requiresO(N2) com-
puter memory and a simple estimate shows that our com
tation cannot be done on most common computers. One
out of this problem is to make an approximation about
nature of the forces within the crystal. From now on, w
assume that the crystal atoms interact with their nea
neighbors through stretching interactions and with their s
ond nearest neighbors through bending interactions, and
these are the only interactions present. Hence, the force
stant matrix will be massively sparse and this allows us
perform the inversion in Eq.~3.14! even ifKBB is large. This
approach approximates the effect of the infinite bath usin
7-4



ra
h

ce
h
h

th

-
by
th

-

at
he

ond

ms

pri-
this

DIFFUSION IN CHANNELED STRUCTURES: XENON . . . PHYSICAL REVIEW E68, 046127 ~2003!
large, but finite part of the crystal that reproduces the vib
tional density of state accurately. We refer to this approac
the ‘‘brute force’’ method.

2. Brillouin zones and defects

In this section, we will demonstrate how the force-for
correlation function can be calculated in an exact way. T
approach uses ideas first introduced by Maradudin in
study of defects in solids@22#. We rewrite Eq.~3.14! as

^FT
†~s!~FT

†!T&5@L~0!2L~s!#/s, ~3.15!

where

L~s![b21MT
1/2K̃TBG~s!K̃BTMT

1/2, ~3.16!

with

G~s![@s21K̃BB#21. ~3.17!

As before, the problem with the last expression lies in
inversion of a large matrix. The functionG0(s) defined as
G0(s)[@s21K̃#21, where K̃ is the mass-scaled force con
stant matrix for the full crystal, can be obtained exactly
using a Fourier representation and then integrating over
first Brillouin zone of the crystal. We assume thatG0(s) is
known and obtainL(s) in terms of it. To proceed, we re
block K̃ in the following way:

K̃5S K̃TT K̃TB1
K̃TB2

K̃B1T K̃B1B1
K̃B1B2

K̃B2T K̃B2B1
K̃B2B2

D , ~3.18!

where we have split the bath into two parts: the primary b
subspaceB1 refers to bath atoms that couple directly to t
s
e

a
or

04612
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target~i.e., they have a target atom as their nearest or sec
nearest neighbor!; the secondary bath subspaceB2 contains
atoms that are not directly coupled with the target ato
~clearly, B2 is much larger than the other subspaces!. Note
that K̃TB2

5K̃B2T50.

We write K̃BB5K̃2D̃, where

D̃[S K̃TT K̃TB1
0

K̃B1T 0 0

0 0 0

D ,

and rewriteG(s) as

G~s!5@s21K̃2D̃#215@12G0~s!D̃#21G0~s!.
~3.19!

We separateG0(s) into blocks as

G0~s!5S g11 g12

g21 g22
D , ~3.20!

where the 1 subspace contains the target and the bath
mary zone and 2 refers to the bath secondary atoms. In
representation,

D̃[S dK̃ 0

0 0
D , ~3.21!

where

dK̃[S K̃TT K̃TB1

K̃B1T 0
D . ~3.22!

By evaluating@12G0(s)D̃#21G0(s), we find that
G~s!5S ~12g11dK̃!21g11 ~12g11dK̃!21g12

g21dK̃~12g11dK̃!21g111g21 g21dK̃~12g11dK̃!21g121g22
D . ~3.23!
-
v-
t is
There are still multiplications of large matrices in the la
expression, but notice that the only inverse that we ne

(11g11dK̃)21, contains matrices in the 11 space. These m
trices are relatively small and the inversion is much m

manageable. Moreover, by noting thatK̃TB andK̃BT are non-
zero only in the 11 subspace, only the 11 block ofG(s) is
needed in order to computeL(s), which thus becomes
t
d,

-
e

L~s!5
1

b
MT

1/2K̃TB

1

g11
21~s!2dK̃

K̃BTMT
1/2, ~3.24!

using Eqs.~3.16! and~3.23!. This expression is more conve
nient than Eq.~3.14! because it involves small matrices. E
erything that we have done in this subsection is exact. I
7-5
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B. PALMIERI AND D. RONIS PHYSICAL REVIEW E68, 046127 ~2003!
very simple to work with Eq.~3.24! provided that we have
calculated g11(s) beforehand.

The periodicity of the lattice can be used to obtainG0(s),
and hence, g11(s), in terms of integrations over the Brillouin
zone. Since these methods are standard~see, e.g., Ref.@23#!,
we simply state the result; i.e.,

@G0~s!# i , j
a,b5F 1

s21K̃
G

i , j

a,b

5E 8 dk

~2p!3
eik•(Ri2Rj )(

p

ep
a~k!@ep

b~k!#T

s21vp
2~k!

,

~3.25!

where the indicesi and j indicate which unit cell the atom
lie in, and wherea andb denote the atoms within the un
cell and the Cartesian components of the displacements.
prime on the integral sign restricts the integration to the fi
Brillouin zone of the crystal. Also,vp

2(k) and ep(k) are,
respectively, thepth eigenvalues and eigenvectors of the m
trix K̃(k) defined by

K̃a,b~k![(
R

e2 ik•RK̃R
a,b , ~3.26!

whereR is the lattice vector connecting the respective u
cells of atomsa andb.

This method requires an eigenanalysis of a matrix of ra
3N0, for every wave number (k), whereN0 is the number of
atoms in the unit cell. On the other hand, the numeri
evaluation of the Fourier transform has to be done caref
such that an accurate result is obtained. In particular,
sampling of wave vectors has to be on a scale finer t
2p/uRi2Rj u, which is a problem when large separations a
needed.

Thus, we have two ways of calculating the force-for
correlation function. The first, is a brute force way in t
sense that we make the bath as large as we can~the upper
bound is determined by the amount of computer memory
can use! and perform the matrix inversion using a spar
subroutine. The other approach is to use the theory of def
together with a Brillouin zone calculation ofG0(s). This
approach is exact on paper, but the numerical integra
prescribed by Eq.~3.25! introduces inaccuracies. Another a
proach would be to approximate thek dependence ofvp(k)
and do the integrals exactly. We tried all three approac
and they give comparable results. We decided to use
brute force method as it is free of the above problem.

B. Differential equations

The Langevin equation derived in Sec. II C is not conv
nient for numerical use. First, while we are able to calcul
the force-force correlation function in time or frequency, w
do not have a simple analytic representation for this functi
All we have are inefficient ways to obtain the function at
discrete collection of points. Second, the Langevin equa
is a stochastic colored-noise integro-differential equation
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this section, we drop the integral term in Eq.~2.7! at the
expense of introducing extra dynamical fields, and in or
to do this, we introduce an analytic approximation to t
memory functions.

In frequency space, the force-force correlation function
described by Eq.~3.14!. We approximate the Laplace tran
form of the memory function matrix as

b^FT
†~s!FT

†T&'
s

A1Bs1Cs2
, ~3.27!

whereA, B, andC are 3NTarget33NTarget matrices. Analyti-
cal expressions forA andC can be obtained from thes→0
ands→` limit of Eq. ~3.14!. After examining several differ-
ent schemes for obtainingB, each giving roughly equivalen
results, we decided to obtain theA and theB matrices from
a linear least square fit while theC matrix was obtained from
the asymptotic relations. Note that our approximation for
memory functions captures the decay and the oscillatory
havior of the memory function.

As shown in Ref.@20#, the vibrational density of state
g(v) can be expressed in terms of the memory function

g~v!5Tr$Re@C̃~ iv!#%, ~3.28!

where

C̃~s![S s1
K̃eff

s
1bM21/2^FT

†~s!FT
†T&M21/2D 21

.

~3.29!

In Fig. 1, we compare the approximate vibrational density
states with the exact result calculated using Brillouin zo
sums. The agreement is excellent.

FIG. 1. The exact density of states~full line! for Theta-1 ob-
tained in a Brillouin zone calculation is compared with the appro
mate density of states~dashed line! that is generated using ou
representation of the memory function, Eq.~3.27!. The force con-
stants are specified in Sec. IV A.
7-6
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DIFFUSION IN CHANNELED STRUCTURES: XENON . . . PHYSICAL REVIEW E68, 046127 ~2003!
Note that the matrix̂ FT
†(s)FT

† T& does not have a ran
equal to 3NTarget. This is expected since every atom in th
target space does not interact directly with the bath. In f
for the harmonic interactions considered here, only tar
atoms which have a bath atom as their nearest or sec
nearest neighbor can interact with the bath, and only th
have nonzero random forces. In reality, the rank of the ma
is even smaller~e.g., as indicated by extra zero eigenvalue!.
This implies that there are extra motions of the target ato
that do not couple to the bath. An example of such a mot
is illustrated in Fig. 2. Therefore, henceforth, we work in
reduced space~whereA, B, and C are nonsingular! deter-
mined by the number independent target motions that co
to the bath.

With our expression, Eq.~3.27!, for the force-force corre-
lation function, we can replace the noise and friction term
the Langevin equation, Eq.~2.7!, by an extra dynamica
field, 2 ẏ(t). The equations of motion for the guest and t
get atoms are now written as

dpG~ t !

dt
52

dU@rG~ t !,RT~ t !#

drG
, ~3.30!

dPT~ t !

dt
52KeffRT~ t !2

dU@rG~ t !,RT~ t !#

dRT
2 ẏ~ t !,

~3.31!

and

S C
d2

dt2
1B

d

dt
1AD y~ t !5h~ t !1M21PT~ t !. ~3.32!

The extra dynamical fieldy(t) is a generalized Ornstein
Uhlenbeck process@24# with random initial conditions tha
satisfy

^yyT&5kBTA21, ~3.33a!

^ẏyT&5^yẏT&50, ~3.33b!

and

^ ẏẏT&5kBTC21, ~3.33c!

and where the white noise variableh(t) satisfies

^h~ t !h~ t8!T&5kBTBd~ t2t8!. ~3.33d!

FIG. 2. In this figure, the gray atom is a bath atom while t
black ones are target atoms. The motion of the second target ato
illustrated. For potentials that include only stretching and bend
energies, the bath atom does not feel the motion since the angu
remains unchanged.
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In Appendix A we show that this set of equations of moti
for the target atoms is equivalent to Eq.~2.7!, as long as the
memory function can be written as in Eq.~3.27!.

C. Potential of mean force approximation

At this point, we have everything that we need to perfo
simulations of the guest motion inside the channel used
calculate the correlation functions appearing in the diffus
coefficient@cf. Eq. ~2.5!#. The only quantity that is still miss-
ing is the plane potential of mean force. In this section,
derive an approximation for the potential of mean for
W(rG) for the guest in the channeled structure.

The mean force,F(rG), can be obtained from the follow
ing potential of mean force:

W~rG!52kBT lnF E dRTe2b[1/2RT
TKeffRT1U(rG ,RT)] G

52kBT lnF E dRTe2bU8G , ~3.34!

where the definition ofU8 is obvious and whereRT is now
the displacement of the target atoms from their equilibriu
positions in the absence of the guest. The interaction po
tial between the target and the guest, which is still unspe
fied, will not have a simple linear or quadratic form. Ther
fore, in general, the integral appearing in the last equa
cannot be done analytically. Nonetheless, given the stiffn
of the lattice, we can find a good approximation forW(rG).

We rewrite the target displacement vector asRT5RT
(0)

1dRT and Taylor expand the interaction potential abo
RT

(0) . For the following choice forRT
(0) ,

KeffRT
(0)5F~rG ,RT

(0)!; ~3.35!

i.e., the position where the net force on the target ato
vanishes, the potential of mean force can be rewritten as

W~rG!5U~rG ,RT
(0)!1

1

2
RT

(0)TKeffRT
(0)

2kBT lnS E ddRTe2b/2dRT
TD(rG)dRTD

2kBT ln^e2bdU&, ~3.36!

where

D~rG![Keff1
]2U~rG ,RT

(0)!

]RT
2

, ~3.37!

^~••• !&5

E ddRTe2b/2dRT
TD(rG)dRT~••• !

E ddRTe2b/2dRT
TD(rG)dRT

, ~3.38!

and
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g
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B. PALMIERI AND D. RONIS PHYSICAL REVIEW E68, 046127 ~2003!
dU5
1

3!

]3U~rG ,RT
(0)!

]RT
3

3RT
31•••, ~3.39!

where the3 in the last equation implies that the multidime
sional matrix product is taken appropriately. The first integ
is just another Gaussian integral while the ln^e2bdU& can be
expanded in cumulants~see Ref.@25#!. By neglecting terms
that do not contribute to the mean force, we can write the
expression for the potential of mean force as

W~rG!5U~rG ,RT
(0)!1

1

2
RT

(0)TKeffRT
(0)

1
kBT

2
ln$det@Keff

21D~rG!#%

2kBT(
j 51

`
^^~2bdU ! j&&

j !
, ~3.40!

where^^•••&& are cumulant averages and where the pot
tial has been shifted by constants so as to vanish when
guest is noninteracting.

At low temperatures, the first temperature correction
the potential of mean force will be linear inT, and the cu-
mulants give higher order temperature corrections. In
work, we only keep the linear temperature dependence
drop the remaining terms; this turns out to give an excell
approximation at room temperature for our system. In Fig
we compare the numerically simulated force on a froz
guest with that obtained from Eq.~3.40!.

This section will be concluded with a brief remark. In th
simulations, before releasing the guest, the lattice mus
aged such that the target atoms have enough time to

FIG. 3. The force acting on xenon in Theta-1 during the aging
shown as the noisy curves. The curve showing large fluctuation
obtained at 300 K, the other at 3 K. The straight lines are
approximate values for the mean force at 300 K and 3 K. The g
is at ~6.49633 Å, 8.07333 Å, 2.36156 Å!. The system and the po
tential are defined in Sec. IV A
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their equilibrium positions to ones that, on average, mi
mize the free energy of the system. Another scenario may
that, during the aging, the target atoms undergo a unifo
collective translation that would put the guest at a minimu
Clearly, this should not happen. In order to prevent suc
collective motion, we tethered some of the edge atoms of
bath ~specifically, those atoms that were not fully coord
nated!. In Appendix B, by using continuum elastic theory, w
show that the tethering of boundary atoms does what
want for a three-dimensional system, namely, it makes a
form translation of the target atoms impossible without
energy cost. On the other hand, this simple calculation sh
that for one- and two-dimensional systems, the translation
a small portion inside the crystal costs no energy ev
though the edges of the crystal are tethered, and is ano
manifestation of the well known Mermin-Wagner instabili
in low dimensional solids@26#.

IV. RESULTS

A. Specification of the system and potentials

In this section, we briefly describe the system that we w
be working with. In particular, we specify the harmonic for
constants and the form of the guest-target interaction po
tial. For practical purposes, we chose a sodalite having
connected, one-dimensional, channels. This will allow us
calculate plane averages using a single channel. The ze
we chose is Theta-1~TON!. This system is a high silicate
zeolite. We therefore assume that it has no Al atoms and t
has the further advantage of not having any counter io
Theta-1 contains two ten-membered oxygen-ring chann
per unit cell. The target space that we used contains five
cells alongz and embeds the channel out to a radius of 6.5
from the channel axis. The target zone contains 210 ato
~140 oxygens and 70 silicons! and is electrically neutral. The
crystallographic unit cell for Theta-1 is cubic and is d
scribed in Ref.@27#. The full unit cell contains 72 atoms
Notice that there is a reflection plane inx through the middle
of the unit cell. The target zone is depicted in Fig. 4. T
harmonic force constants were obtained from Ref.@28# and
are summarized in Table I.

We assume that the potential energy of xenon insid
sodalite is well described by a Lennard-Jones term plus
induced dipole-electric field interaction; i.e.,

U~rG ,r1 , . . . ,rNTarget
!5 (

i 51

NTarget

4e i ,GF S s i ,G

r i ,G
D 12

2S s i ,G

r i ,G
D 6G

2
aG

2
E•E, ~4.1!

where

E[ (
i 51

NTarget qir i ,G

4pe0r i ,G
3

~4.2!

is the electric field felt by the noble gas atom due to t
partial charges on the crystal atoms. In the last two eq
tions, r i ,G[ur i2rGu, e i ,G and s i ,G are the Lennard-Jone

s
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e
st
7-8



s,
e

es
ic

o
re
ite

e

the
e of
and
.
to

for
-
nd

e
lues
rs

iz-
-
s
r

, we
rtial
(

la

a-

rd-
tions

in-
nel
-
are
an-

; a
s in

in

on

DIFFUSION IN CHANNELED STRUCTURES: XENON . . . PHYSICAL REVIEW E68, 046127 ~2003!
parameters related to the guest-Si or guest-O interactione0

is the permittivity of vacuum,qi is the partial charge on th
i th target atom, andaG is the polarizability of the guest.

There seems to be a consensus for the calculated valu
the partial charges in silicates in the quantum mechan
literature ~see, e.g., Refs.@29,30#!; namely,q0521.2e and
qSi52.4e, wheree is the electron charge. For the values
the Lennard-Jones parameters, we did not find good ag
ment in the literature. A common way to proceed is to wr
the Lennard-Jones potential between moleculei and j as

FIG. 4. ~Color online! The target zone. The oxygen atoms are
red and the silicon atoms are in blue. A minimum~a! and a maxi-
mum ~b! W(z) plane are shown. Note that the binding pocket is
the near side of the channel for the plane~a!.

TABLE I. Silicate force constants@28#.

Motion Force constant

Si-O stretch 5.0310218 J Å22

O-Si-O bend 1.35310218 J rad22

Si-O-Si bend 0.31310218 J rad22
04612
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Ai j

r i , j
6

1
Bi j

r i , j
12

. ~4.3!

If we have a way to calculateAi j and if we know the inter-
atomic equilibrium separationr i , j

eq521/6s i , j , we can deter-
mine e i , j . The equilibrium separation will be taken as th
sum of the radius of the atoms involved, whileAi j is com-
monly determined by the London formula~cf. Ref. @31#!,

Ai j 5
3

2
a ia j

EiEj

Ei1Ej
, ~4.4!

or the Kirkwood-Muller formula~cf. Refs.@32,33#!,

Ai j 56mc2a ia j S a j

x j
1

a i

x i
D 21

, ~4.5!

wherea i is the polarizability of atomi andx i is its magnetic
susceptibility.

Table II contains a summary of what has been used in
literature to calculate the Lennard-Jones parameters. Non
these studies used accurate partial charges for the silicon
the oxygen. In Refs.@5,6#, a fully ionic structure is assumed
In Ref. @34#, the oxygen partial charge is introduced solely
balance the charge of the counterions, while in Ref.@35#, the
partial charges are neglected. The atomic polarizability
the channel atoms determined in Refs.@5,6# seems reason
able. The values for the polarizabilities for the ionic a
neutral atoms areaO50.802, aO2253.88, aSi55.38 and
aSi1450.0165 Å3 ~cf. Ref. @36#!. We expect values that ar
between these limiting cases for silicate atoms and the va
reported in Refs.@5,6# are in that range. The other paramete
in Refs.@5,6# are those of a fully ionic crystal~the radius, the
ionization potential, and the magnetic susceptibility!. On the
other hand, Ref.@34# uses reasonable values for the polar
ability while Ref. @35# uses the polarizability of neutral oxy
gen. In addition, Refs.@34,35# use the same oxygen radiu
which is bigger than that of O22. This radius is the van de
Waals radius of oxygen given by Bondi@37#.

Because of the lack of agreement in these approaches
decided to use our own parameters using the accurate pa
charges values and interpolating the needed parametersE,
a, . . . ) from the CRC reference values~cf. Ref.@36#! of the
neutral and ionized atoms. We will use the London formu
with the polarizabilities of Refs.@5,6# and we will interpolate
the ionization potentials for Si12.4 and O21.2 using data in
the literature@36#; the parameters thus obtained are summ
rized in Table II. By using the London formula, Eq.~4.4!,
and the data in Tables III and II one obtains the Lenna
Jones parameters for the noble gas–zeolite atom interac
listed in Table IV.

Henceforth, we consider the case of xenon diffusing
side Theta-1. The potential of mean force inside the chan
can be calculated using Eq.~3.40! and some constant poten
tial of mean force surfaces are shown in Fig. 5. There
broad binding regions staggered on either side of the ch
nel. The binding pockets are almost flat energetically
closer examination shows that there are three binding site
7-9
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TABLE II. Parameters for zeolites silicon and oxygen.

Ref. Atom q(e) Radius (Å) a (Å3) E~eV! x(cm3/mol)3106

@5,6#a O 22 1.40 1.65 13.55 12.58
Si 14 0.42 0.02 166.73 1.00

@34#b O 20.15, 20.20 1.52 1.25, 1.40 N/A 10.0, 9.9
@35# O 0 1.52 0.85 N/A N/A
This work O 21.2 1.08 1.65 3.887

Si 12.4 0.53 0.02 39.855

aIn these references, the values for all the parameters are determined from the fully ionized atoms ex
a which is determined more accurately from refractivity experiments~cf. Ref. @5#!.
bThis comes from work on zeolites NaX and NaY. When two values are reported, it refers to the two zeo
types, respectively. The charge on the oxygens is there to neutralize the charge carried by the coun
Also, it is assumed that the Si/Al atoms do not contribute to the potential.
cHere, the Si/Al atoms as well as the partial charges are neglected.
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each pocket; one is exactly in the middle of the cell~in x)
and the other two are symmetrically placed on either s
The barrier for motion between the central binding site a
either of the ones to its side is very small, about 0.1kBT at
300 K. Hence, there will not be any specific contributions
the permeability from the saddle points on these paths,
we have omitted them from the figures for the sake of clar

The figures show that it is easier for the xenon atom
move between binding sites on the same side of the cha
~the energy barrier is lower!. The reaction coordinate linking
two minimum energy sites is also shown in these figur
Notice that one of these paths~path 1 in Fig. 5! links binding
sites that lie on the same side of the channel. The other~path
2 in Fig. 5! bridges binding sites that are on opposite sides
turns out that path 1 has a lower activation energy than p
2. The free energy~potential of mean force! is plotted against
the z component along path 1 and path 2 in Fig. 6.

The potential of mean force,W(r ), can be used to calcu
late the plane potential of mean force,W(z), as

e2bW(z)5
1

ACell
E

Unit cell
dxdye2bW(r ), ~4.6!

whereACell is the area of the unit cell perpendicular toz and
the integration is restricted to the unit cell~note that each
unit cell contains two channels!. The resulting plane poten
tial of mean force along the channel axis is shown in Fig
This figure also shows the minimum potential of mean fo
in each plane. The enthalpy of sorption,DH, of xenon in
Theta-1 can be estimated from Ref.@5# as

TABLE III. Parameters for the noble gas atoms.

Atom Radius~Å! @38# a (Å3) @36# E~eV! @36#

Ne 1.560 0.3956 21.56460
Ar 1.900 1.6411 15.75962
Xe 2.224 4.0440 12.12980
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\v i , ~4.7!

whereWmin is the minimum in the potential of mean forc
and where the last term is a sum over the zero point ene
of vibration of the guest at the absolute minimum~this as-
sumes that the potential of mean force near the minimum
almost harmonic!. Assuming that this last term is small, w
obtain a heat of sorption ofDH'6.4kBT at 300 K. Experi-
mental measurements for xenon absorbed in mordenite g
DH514.1kBT @5# and for xenon absorbed in zeolite Na-
DH57.21kBT @39# at 300 K. Since the sorption occurs i
different system, we do not expect our number to agree.
the other hand, this confirms that our model potential d
give heats of sorption that are the right order of magnitu
We did not find any experimental data for xenon absorbed
Theta-1. However, Ref.@35# calculates, using a rigid lattice
and no polarization, a value for the activation energy of x
non in Theta-1,Eact51.24kBT at 300 K. This number can be
compared with the path’s activation energies of Fig. 6 wh
givesWact51.95kBT, 2.06kBT or 2.15kBT at 300 K depend-
ing on the path. Also, Ka¨rger et al. @40# obtained an activa-
tion energy studying the self-diffusivity of xenon in silicalit
@a three-dimensional~3D! interconnected ten-oxygen rin
channel silicate# assuming that the temperature depende
of the self-diffusivity is well described by

D5Doe2bEact. ~4.8!

TABLE IV. Lennard-Jones parameters for the gas-channel in
actions (T5300 K).

Gas atom sSi-X ~Å! eSi2X /kBT sO-X ~Å! eO-X /kBT

Ne 1.8622 0.0385 2.3522 0.1841
Ar 2.1622 0.0512 2.6522 0.3440
Xe 2.4537 0.0500 2.9437 0.4378
7-10
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FIG. 5. ~Color online! Constant potential of mean force surfaces for xenon in Theta-1~two unit cells along the channel axis are show!
at 300 K. The surface energy is indicated in the corner of each part. The absolute minimum is at26.94kBT. Steepest descent reactio
coordinates are shown in red and blue.
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Their measured value wasEact52.0kBT at 300 K. In our
case, this should be compared with the barrier inW(z) which
is 1.43kBT. Note that in Sec. II B we assumed that the p
tential of mean force was defined relative to its value in
adjacent bulk phases. If an experiment is carried out wh
Theta-1 separates two solutions, the potential of mean fo
has to be shifted by the configurational Helmholtz free
ergy of the guest in the bulk,WBulk .

B. Simulation results and permeability of xenon in Theta-1

Before presenting the results of the simulation, there
still a few remarks that must be made. First, the simulat
will have to perform many matrix-column vector multiplica
tions. These matrices,Keff , A, B, and C, are all sparse to
some extent. In order to reduce the computation time, we
the elements smaller than some threshold in these matric
zero, and then use sparse matrix routines to perform the m
04612
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tiplications~specifically, we used the NIST sparse subrout
package@41#!. The threshold is chosen such that the effect
the vibrational density of states of the crystal is negligib
Because the induced dipole/electric field interaction in
potential is long range, we added a static bath backgro
correction potential, obtained by the means of Ewald su
~see, e.g., Ref.@23#!, in the simulations. Finally, the simula
tions were performed by integrating the set of different
equations, cf. Eqs.~3.30!–~3.32! using a second order sto
chastic Runge-Kutta integrator@42#. The aging time was
4.096310212 s and the simulation length was 8.19
310212 s or 12.288310212 s. The time step used was 5
310216 s. We calculated the correlations for every initi
starting points by averaging over 2000 independent traje
ries and performed this numerical work on a Beowulf clus
consisting of 16 processors.

The space dependent diffusion coefficientD(z)/n` is ob-
tained from the plateau value of
7-11
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dr i^vG,z~ t1!vG,z& re
2bW(r )
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ACell1E
0

t

dt1E
Unit cell

dr i^bF„z~ t1!…vG,z& re
2b[W(r )2W(z)]
n

rc
r
e
ou

r

es
h

tio
f
r-
ld

ot

on

en

t
ed

al
e
te
re

m

co
se

h
is

n
w
en

e

ss
cted
e-

or

ted
es,

ned

d-

.
at

.,

uan-
with
ran-
ch.

get

st
op-
ing
the
nd

aths
tate
ants
ngs.
v-
ac-
his

int,
ne of
e

whereW(r ) is the potential of mean force at a point,W(z) is
the plane potential of mean force defined in Eq.~4.6! and
ACell is the xy area of the unit cell. Each plane integratio
was performed using a grid that contains between 25 and
points, chosen in such a way that the potential of mean fo
in that plane and the plane average potential of mean fo
are accurately reproduced. The correlation functions w
obtained from the numerical simulations and space gr
symmetries pertaining to a single channel were used to
duce the numerical effort~by four!. Values between the grid
points were interpolated using a bicubic spline and th
were used to numerically perform the plane integration. T
quantity D(z,t)ebW(z)/n` is shown in Figs. 8 and 9 forz
52.519@maximumW(z) plane#, and 0.944 625 Å@minimum
W(z) plane#.

Figures 8 and 9 also illustrate the effect that the correc
term in the denominator in Eq.~4.9! has on the integral o
the velocity correlation function. In fact, neglecting that co
rection is equivalent to neglecting the † on the current fie
J in Eq. ~1.5! which has been shown to be incorrect@18#,
even if the naive Green-Kubo integral converges. Also, n
that the correction factor in the maximumW(z) plane lowers
the average of the velocity correlation function integral~see
Fig. 8!, while it raises the average of the velocity correlati
function integral in the minimumW(z) plane. The effect of
the correction in the minimum energy plane is in agreem
with the prediction made in Ref.@18#.

The dynamics can change the relative contributions
D(z) within a given plane over what would be expect
simply on the basis of the Boltzmann weight~e.g., as in a
Smoluchowski approach!. This is illustrated in Fig. 10. It is
clear from these figures that the dynamics can drastic
affect the shape of the various contributions within a giv
plane. Regions with low potentials often have less correla
dynamics, while those with high potentials will have mo
coherent motion; what contributes toD(z) is a compromise
between the Boltzmann weight and the coherence of the
tion.

Table V lists the calculated space-dependent diffusion
efficient D(z)/n` for several planes. We also show the
results graphically in Fig. 11 for one unit cell alongz. In Sec.
II A, we assumed that the quantityD(z)ebW(z) is constant
near the barrier tops. This quantity is shown as the das
line in Fig. 11; clearly the assumption is valid. If the line
fitted to a constant, we find that@D(z)/n`#ebW(z)5(1.37
60.10)31028 m2 s21. Note that the results of this sectio
were all obtained from simulations using sparse matrices;
have checked that the results are not significantly differ
when we use the full matrices.
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The permeabilityP8 as defined in Sec. II A can now b
calculated. As is clear from Eqs.~2.4! and~2.5! the intrinsic
permeability will be inversely proportional to the thickne
of the material and independent of the area, as is expe
from a resistor network analogy. By calculating the perm
ability of a single channel in a single unit cell,Pchannel, it is
straightforward to obtain the macroscopic permeability. F
Theta-1 we find that

P8

n`ebWBulk
53.03531013 s/~m kg!,

where we have included the explicit correction associa
with the free energy of the guest in the adjacent phas
WBulk , since the potentials used here have their zero defi
relative to vacuum.

The diffusion of xenon in Theta-1 has not yet been stu
ied experimentally. However, as mentioned above, Ka¨rger
et al. @40# examined the self-diffusion of xenon in silicalite
The high-temperature limit self-diffusion coefficient th
they obtain with Eq.~4.8! is Do5(0.960.2)3108 m2 s21.
This can be compared with our value, i.e
@D(z)/n`#ebW(z)5(1.3760.10)31028 m2 s21, which,
given the differences between the two systems and the q
tities measured or calculated, is in reasonable agreement
the experimental value. In the next section, we discuss t
sition state theory within the context of the current approa

V. TRANSITION STATE THEORY

Another approach that one could have used in order to
the permeability of the system is transition state theory~see,
e.g., Ref.@43#!. This theory treats the motion of the gue
between two neighboring binding sites as an activated h
ping process, where the kinetics are described by hopp
rate constants that are fully determined by motion near
steepest descent path linking two binding sites. We fou
two types of saddle points~transition states! for our potential
of mean force. Their corresponding steepest descent p
are shown in Fig. 5. The assumptions behind transition s
theory are that there is an equilibrium between the react
and the transition state and that there are no recrossi
Also, transition state theory will be accurate only if the a
erage motion of the guest inside the crystal follows the re
tion coordinates associated with each transition state. T
last assumption can be verified in the following way.

If we start an ensemble of trajectories at the saddle po
we should see that, on the average, the guest moves to o
the two binding sites following the prescribed path. W
started trajectories at the two saddle points~each ensemble
7-12
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DIFFUSION IN CHANNELED STRUCTURES: XENON . . . PHYSICAL REVIEW E68, 046127 ~2003!
contained 2000 members! and we averaged the trajectorie
conditional on which binding sites they end up in. The
sults are shown as 3D plots in Fig. 12, and clearly show fr
the average paths are qualitatively different than the stee
descent path. Moreover, while many of the trajectories t
are started at a saddle point end up in the nearest neig
minima, a significant fraction of trajectories also end up f
ther away on the time scale of the velocity correlation fun
tion; for cases shown in Figs. 12~a! and 12~b!, only 66.5%
and 66.7%, at 300 K~blue curve!, of the population is ac-
counted for by those that end up in the nearest neighbor s
respectively. In either example shown in Figs. 12~a! and
12~b!, the short-time behavior of the average trajectories t
do end up in the minima predicted by the minimum ene

FIG. 6. The potential of mean force along path 1~dashed line!
and path 2~full line!. The energy is plotted as a function ofz ~and
as a function of the distanced along the path in the inset!. The
activation energy for path 1 is 1.95kBT and, for path 2, 2.15kBT or
2.06kBT ~depending on the starting point! at 300 K.

FIG. 7. The plane potential of mean force for the middle u
cell of the channel is represented by the full curve. The das
curve shows the value of the minimum in every plane.
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path is very different from the behavior expected from t
steepest descent path.

For the minimum energy path linking binding sites on t
same side of the channel, the potential energy in the sa
plane suggests that trajectories that are directed away f
the center alongy will be backscattered towards the center
the channel. For the other saddle plane, it is now the tra
tories that are initially aimed away from the center inx that
will be backscattered towards the center. Thexy components
of the average trajectories for path 1 are plotted in Fig.
against theirz component to emphasize the differences w
the steepest descent path and illustrate the last comm
The error bars in these figures show that the steepest de
path is within the standard deviation associated with the

t
d

FIG. 8. @D(z)/n`#eW(z)/kBT for z52.519 Å is extrapolated from
the plateau value of the full line. The dashed line is the uncorrec
result. This plane is a maximum energy plane, with respect
W(z).

FIG. 9. @D(z)/n`#eW(z)/kBT for z50.944 625 Å is extrapolated
from the plateau value of the full line. The dashed line is the u
corrected result. This plane is a minimum energy plane with resp
to W(z).
7-13
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FIG. 10. The Boltzmann factor
e2W(r )/kBT and the factor
*0

`dt^vz(t)vz& r i
e2W(r )/kBT in the

maximum ~a! and minimum ~b!
W(z) planes. Thez axis has arbi-
trary units.
d
ics
e

ta

d

t t
d
2
tr

av-
is

wn

hy
in-
ra-

ries
gs.
ent

d at
east
aths

till
erage of the trajectories, but it is clear that the steepest
scent paths alone do not accurately describe the dynam

Another way to verify the validity of transition stat
theory is to look at the parameter*dt^vz(t)vz& re

2W(r )/kBT in
the transition planes, as shown in Fig. 14. For transition s
theory to be right, the plane averages in Eq.~4.9! must be
dominated by the value of*dt^vz(t)vz& re

2W(r )/kBT along the
reaction coordinates. Hence, we expect a spike at the sa
point in the saddle planes. It is clear from these figures~the
saddle point is indicated by an ‘‘X’’ in each plane! that the
transition state contributes to the plane average, but tha
rest cannot be neglected. Figure 14 shows that the sa
point gives the largest contribution while in saddle plane
the saddle point is not even the point with the largest con
bution. We conclude that for this particular temperature~300
04612
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,
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K!, transition state theory does not properly describe the
erage motion of xenon in Theta-1. Our potential, which
very flat, is probably one of the reasons for this breakdo
of transition state theory.

If the flatness of the potential is the main reason w
transition state theory breaks down for our system, it is
teresting to investigate the effects of reducing the tempe
ture on the dynamics. The conditional average trajecto
starting at the two saddle points at 3 K are shown in Fi
12~a! and 12~b! as the green curves. These curves repres
86.8% and 98.6% of the populations for trajectories starte
the saddle points 1 and 2, respectively. As expected, at l
for path 1, the trajectories follow the steepest descent p
more closely at lower temperature.

For the path 2 saddle point, the average trajectory s
TABLE V. The diffusion coefficient in different planes.

Name z ~Å! @D(z)/n`#3108 m2s21 e2bW(z) @D(z)/n`#ebW(z)3108 m2s21

Minimum W(z) plane 0.944625 38.11 24.05 1.5844
Saddle plane path 2 1.48 16.73 13.09 1.2782
Intermediate plane 1 1.57438 14.83 10.85 1.3669
Intermediate plane 2 2.36156 7.38 5.75 1.2847
Maximum W(z) plane 2.519 7.67 5.74 1.3349
Saddle plane path 1 3.27 25.22 18.03 1.3988
7-14
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DIFFUSION IN CHANNELED STRUCTURES: XENON . . . PHYSICAL REVIEW E68, 046127 ~2003!
does not follow the steepest path as well as it did for pat
at low temperature. This happens for two reasons. First
the region where path 2 merges into path 1, the stee
descent~path 2! bends sharply and the guest jumps out
steepest descent region, using the kinetic energy it has pi
up in moving down the barrier. Second, the binding poc
has its two absolute minima on either side of thex-reflection
plane in the unit cell, and the barrier separating them is
tremely small compared to the kinetic energy picked
down the barrier; hence, the forces are not large enoug
keep the guest localized near the ends of the steepest de
curve.

In a hopping model that incorporates hops along path
and 2 and assumes fast equilibrium between the three b
ing sites in each of the low energy pockets, the steady-s
flux is given by

J52
2rcKeq~k1K'12k2!

~2K'11!Nn`kBT
~m12m2!, ~5.1!

FIG. 11. The space-dependent diffusion coefficientD(z)/n`

~solid line! and @D(z)/n`#eW(z)/kBT ~dashed line!.
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whereki is the rate constant associated with pathi, N is the
number of binding pockets in one channel~assumed large!,
rc is the number of channels per unit area, and the equ
rium constantsKeq andK' govern the equilibrium between
the bulk and the first binding pocket or that between the th
binding sites within a pocket, respectively. Finally, we ha
used the linear approximationdm6;kBTdn6 /n` .

Transition state theory makes an unambiguous predic
for the hopping rate constantsk1 andk2 @44#. By assuming
thatKeq can be obtained from a Langmuir adsorption mod
where bulk atoms are absorbed onto a surface~the first bind-
ing planes in the crystal!, we find that

2k1K'Keq

2K'11
52S 2p~kBT!3

mGKh
(1)Kz

(1)D 1/2

e2b(W1
‡
2Wbulk) ~5.2!

FIG. 13. Thex andy components of the steepest descent pat
~dashed line! and the average trajectory~full line!. The starting
point is at~6.9295 Å, 7.8445 Å, 3.27 Å!. The averagex component
has to follow the reaction coordinate because it lies in the reflec
plane. The errors bars indicate the standard deviation assoc
with the average.
l
FIG. 12. ~Color online! The steepest descent path 1~a!, and the steepest descent path 2~b! ~in red! are compared with the conditiona
averages of the trajectories started at the appropriate saddle point at 300 K~blue! and 3 K ~green!. The surface is at25.3kBT.
7-15
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FIG. 14. The Boltzmann factore2W(r )/kBT and the factor*0
`dt^vz(t)vz& r i

e2W(r )/kBT in saddle plane 1~a! and saddle plane 2~b!. The z
axis has arbitrary units.
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4k2Keq

2K'11
54S 2p~kBT!3

mGKh
(2)Kz

(2)D 1/2

e2b(W2
‡
2Wbulk), ~5.3!

whereWi
‡ and theKh,z

( i ) ’s are the energy and vibrational forc
constants for motion transverse to the steepest descent
at thei th saddle point, respectively. In writing Eqs.~5.2! and
~5.3! we have ignored the vibrational motion of the lattic
other than in its contribution toW1,2

‡ , treated the guest vibra
tions classically, and have assumed a unit transmission c
ficient.

By using Eqs.~5.2! and ~5.3! for the saddle points and
paths shown in Fig. 5 in Eq.~5.1!, we obtain
04612
ath

,

ef-

PTST8

n`ebWBulk
55.43931013 s/~m kg!,

which is clearly different from the value obtained with o
method. While part of the difference could be blamed on o
use of high-temperature, harmonic, partition functions for
vibrational motion transverse to the reaction coordinate
the transition state approach, it is clear that the basic assu
tions of the transition state theory are not satisfied very w
as was discussed above.

In fact, the large contribution to the permeability fro
regions other than the steepest descent lines manifests
in other ways. For example, if we define an apparent act
tion energy asDE‡[] ln P/](2b), we find that, at 300 K,
bDETST

‡ 524.38, compared withbDE‡522.48 using our
method. In both cases, the number is reported with respe
7-16
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DIFFUSION IN CHANNELED STRUCTURES: XENON . . . PHYSICAL REVIEW E68, 046127 ~2003!
the bulk energy, and in our method, we have ignored
temperature dependence ofD(z)ebW(z).

VI. CONCLUDING REMARKS

One important result of this work is thatD(z)ebW(z) is not
only constant in the vicinity of the barrier tops, it is rough
constant throughout the channel for our system. This me
that the diffusion of xenon in Theta-1 is well described a
Smoluchowski @24# process, which says thatD(z)
}e2bW(z), and, as we saw above, not by transition st
theory.

Our expression for the potential of mean force, Eq.~3.40!,
includes the relaxation of the lattice and a temperature
rection term. It is a common practice to neglect both of th
effects. For example, experimental evaluation of diffusion
silicates~see, e.g., Ref.@45#!, often assumes that the activ
tion energy is temperature independent. Also, a rigid lat
is often used in simulations and in the calculation of t
available volume for a guest inside a zeolite~see, e.g., Ref.
@35#!. We have verified that neglecting the temperature
pendence of the potential of mean force does not lead
large errors. The use of a rigid lattice leads to larger, but
acceptable, errors on the shape of the potential for the sys
investigated. There is a more important problem associa
with the dynamical studies of a guest in a channeled st
ture using a rigid lattice which is that the lattice cannot d
sipate the guest’s energy—especially when the activation
ergy is large.

We computed velocity correlation functions at some t
points using a rigid lattice, and it turns out that these
similar to the ones that are obtained with flexible lattice. T
decay of the velocity correlation functions occur on the sa
time scale in both cases, and in the rigid lattice arises so
because of the dephasing associated with the average
initial velocities~kinetic energy correlations are quite diffe
ent!. There are two main mechanisms leading to the deca
the velocity correlation functions. The first is the randomiz
tion of the direction ofvG(t) . The second arises from th
fact that total energy of the guest is not conserved in a fl
ible lattice and this manifests itself in the magnitude of t
guest velocity. For our system, the energy exchange betw
the guest and the lattice occurs on a somewhat longer
scale compared to that associated with randomization of
direction, and thus, this latter effect is captured by the ri
lattice calculations at short and intermediate times.

On the other hand, the relaxation of the lattice will ha
bigger effects on the shape of the potential in small cry
structures~i.e., b-quartz! where the guest is often in th
strongly repulsive part of the pair potential, where the en
gies are larger, and where lattice distortions are larger
addition, anharmonicities and energy exchange will be m
important.

In this work, we used generalized Langevin equations
simulate the target equations of motion. It is clear from Se
II A and II B that the evaluation of the macroscopic perm
ability can be obtained from standard MD. We opted for t
GLE approach because the consistency of our method re
in part, in the accurate description of the infinite crystal
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brations. In MD this is achieved when the number of sim
lated atoms is large. Using GLE’s allows us to drastica
reduce the number of simulated degrees of freedom .

Note that the macroscopic permeability of the Theta
interface may be hard to get experimentally. In fact, Thet
crystals are usually needlelike crystallites with length ran
ing from 0.6–1.0mm and width from 0.06–0.10mm @2#. It
may therefore be difficult to construct a macroscopic int
face where all the channels are aligned. Also, as noted
Kärger et al. @4# in their work on single-file diffusion, 1D
channels can easily be blocked, and hence, in an experim
not all channel will participate in the transport, thereby g
ing a lower apparent single-channel permeability.

In conclusion, we briefly summarize the main features
our approach. First, we believe that our theory is well sui
for diffusion studies in systems containing large poten
barriers where hopping events are rare, and moreover,
not makea priori assumptions about steepest descent pa
~and which turn out to be unwarranted for the example c
sidered here!. Second, the Langevin equation is exact to t
extent that the guest does not interact directly with the tar
that all the forces within the crystal are harmonic, and
vibrational density of states of the full crystal is accurate
reproduced by our approximation for the force-force tim
correlation function. This leads to a practical simulation th
incorporates the full vibrational motion of the crystal. In a
dition, the required time correlation functions are obtain
on a ps time scale.

Third, we introduced an accurate and simple way of o
taining the guest potential of mean force for the system
we tested it against the simulation results.

Fourth, the expression forD(z), cf. Eq. ~2.5! which re-
quires the evaluation of plane averages is general and ca
applied to any crystal system with connected channels. W
such a system the guest is allowed to travel in different ch
nels and the simulations might have to be performed o
larger extents of the full crystal. This would make the pro
lem more difficult numerically. In addition, some assum
tions about the range of the correlations that appear in
memory functions in Eq.~1.4! made in obtaining the expres
sion for the permeability in Ref.@15# might break down if
the structure is too porous and does not contain solvent.

Finally, we have seen that transition state theory give
very different prediction at room temperatures in Theta-1
part due to the very anharmonic nature of the potentials,
in particular, due to the contribution of other regions of t
channel to the permeability.

In a subsequent paper, we will investigate the diffusion
noble gases inb-quartz where the energy barriers are larg
For such a system, the flexibility of the lattice plays a cruc
role. On the other hand, transition state theory is expecte
be more accurate. Another interesting aspect would be
investigate the role of quantum mechanics in our analysi
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APPENDIX A: EQUATIONS OF MOTION

In this appendix, we demonstrate that2 ẏ(t) replaces the
noise and memory term in Eq.~2.7!. In what follows, theT
subscript will be omitted for matrices and vectors in the t
get space. We rewrite Eq.~3.32! as

Ẏ~ t !52M̄Y~ t !1N~ t !1P8~ t !, ~A1!

where

Y~ t ![S y~ t !

ẏ~ t !
D , ~A2a!

N~ t ![S 0

C21h~ t !
D , ~A2b!

P8~ t ![S 0

C21M21P~ t !
D , ~A2c!

and

M̄[S 0 21

C21A C21BD , ~A2d!

where each block ofM̄ is a square matrix. The formal solu
tion of Eq. ~A1! is

Y~ t !5e2M̄tY~0!1E
0

t

dt1e2M̄(t2t1)N~ t1!

1E
0

t

dt1e2M̄(t2t1)P8~ t1!. ~A3!

The last term of this equation is very similar to the memo
term in our Langevin equation, Eq.~2.7!, and, in fact, it
contains that term. Since the last term is a convolution, w
Laplace transformed, it becomes

~M̄1s!21P8~s!.

If we keep in mind that the upper half part ofP8 is zero~the
first 3NTarget elements! and if we denote the inverse as

~M̄1s!21[Q~s![S q11 q12

q21 q22
D , ~A4!

then only the 12 and the 22 parts of the inverse will contr
ute. Evaluating the inverse, we find that

q1252
1

A1Bs1Cs2
A ~A5!

and
04612
-

n
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q225
s

A1Bs1Cs2
C, ~A6!

which when multiplied by C21M21P(s), shows that
q22C

21M21P gives the expected term, i.e.,

q22C
21M21P5

s

A1Bs1Cs2
M21P~s!,

and hence, to the accuracy of our approximate representa
of the memory function, Eq.~3.27!,

Y2~ t !'Fe2M̄tY~0!1E
0

t

dt1e2M̄(t2t1)N~ t1!G
2

1bE
0

t

dt1^FT
†~ t2t1!FT

†T&M21P~ t1!, ~A7!

where the subscript 2 refers to the lower half of the colu
vectors. Therefore, in order to include friction in the equ
tions of motion, we will need to subtract the second part
Y(t) from the equations forṖ(t). This is indeed done in Eq
~3.31!.

The Y(t) must also describe the random force@cf. Eq.
~2.7!# through the white noise term. From Eq.~A7! and from
Eq. ~2.7!, it is clear that the random forceF†(t) should be
represented by

F†~ t !5Fe2M̄tY~0!1E
0

t

dt1e2M̄(t2t1)N~ t1!G
2

. ~A8!

A few manipulations show that this is indeed the case if

^NNT&5S 0 0

0 kBTC21BC21D , ~A9!

and if the random initial conditions forY satisfy

^Y1Y1
T&5kBTA21 ~A10!

and

^Y2Y2
T&5kBTC21 , ~A11!

where the averages ofN(t), Y1, andY2 are zero.

APPENDIX B: ENERGY COST OF A LOCAL
DISPLACEMENT IN AN ELASTIC MEDIUM

This appendix discusses the energy cost for a local
placement in an infinite isotropic continuum. As shown
Ref. @46#, the vector fieldu describing the displacement o
the continuum lattice at positionr obeys the equation

~122s!¹2u~r !1¹@“•u~r !#50, ~B1!

where s is Poisson’s ratio. The free energy cost per u
volume is given by,
7-18
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E5m~uik2 1
3 d ikull !

21 1
2 kull

2 , ~B2!

where summation over repeated indices is implied. T
quantitiesk andm are the bulk modulus and the modulus
compression, respectively, and the elements of the symm
strain tensoruik are given by

uik5
]ui~r !

]r k
1

]uk~r !

]r i
. ~B3!

To get the full energy of the system, Eq.~B2! is integrated
over the whole system.

For the case of interest, the following boundary con
tions will apply in d dimensions:

u~r ,V!50 asr→`, ~B4a!

u~a,V!5du, ~B4b!

whereV represents the angular coordinates. The bound
condition at infinity comes from tethering the edges of t
lattice, while that atr 5a represents, for our problem, a un
form displacement of the target zone along an arbitrary a
We solved this problem in one, two, and three spatial dim
sions using the followingansatz:
c,

p

r.

y

.

.

ys

m

. B

J
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u~r !5“f~r !1“3A~r !. ~B5!

Since we are using linear elasticity, these potentials m
have forms

f~r !5du•r f ~r ! ~B6!

and

A~r !5du3rg~r !. ~B7!

The boundary conditions are then expressed in terms of tf
and g functions, the differential equation is solved and t
energy cost for such a local displacement is computed.
found that there was zero energy cost in one or two spa
dimensions, while in three dimensions it becomes

E56pm
3k14m

6k111m
du2a. ~B8!

For typical values of the moduli anda, this energy is large
compared withkBT, thereby confirming our hypothesis tha
the channel cannot uniformly translate to reduce its ener
a
-

s.
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ys.
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